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1. Introduction
Medication constitutes a major clinical in-
tervention that may yield significant bene-
fits for the patients. Yet, it can also cause 
considerable harm, if inappropriately used/
applied. In the US, adverse drug effects are 

considered as one of the 10 principal causes 
of death, which has been estimated to 
harm at least 1.5 million patients/year, with 
about 25% of the cases being preventable 
[1]. Hospital admissions, prolonged hospi-
tal stays, and serious economic burdens are 
additional consequences of the problem 

[2]. A rather common type of medication-
related problems constitutes adverse drug 
events (ADEs) that are typically defined as 
“injuries due to medication management 
rather than the underlying condition of the 
patient” [3]. ADEs are classified as pre -
ventable and non-preventable. Preventable 
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Summary
Background: Errors related to medication 
seriously affect patient safety and the quality 
of healthcare. It has been widely argued that 
various types of such errors may be pre-
vented by introducing Clinical Decision Sup-
port Systems (CDSSs) at the point of care. 
Objectives: Although significant research 
has been conducted in the field, still medi-
cation safety is a crucial issue, while few re-
search outcomes are mature enough to be 
considered for use in actual clinical settings. 

In this paper, we present a clinical decision 
support framework targeting medication 
safety with major focus on adverse drug event 
(ADE) prevention.
Methods: The novelty of the framework lies in 
its design that approaches the problem holis -
tically, i.e., starting from knowledge discovery 
to provide reliable numbers about ADEs per 
hospital or medical unit to describe their con-
sequences and probable causes, and next em-
ploying the acquired knowledge for decision 
support services development and deploy-
ment. Major design features of the frame-
work’s services are: a) their adaptation to the 
context of care (i.e. patient characteristics, 
place of care, and significance of ADEs), and  
b) their straightforward integration in the 
healthcare information technologies (IT) infra-

structure thanks to the adoption of a service-
oriented architecture (SOA) and relevant 
standards.
Results: Our results illustrate the successful 
interoperability of the framework with two 
commercially available IT products, i.e., a 
Computerized Physician Order Entry (CPOE) 
and an Electronic Health Record (EHR) sys-
tem, respectively, along with a Web proto-
type that is independent of existing health-
care IT products. The conducted clinical vali-
dation with domain experts and test cases il-
lustrates that the impact of the framework is 
expected to be major, with respect to patient 
safety, and towards introducing the CDSS 
functionality in practical use.
Conclusions: This study illustrates an im -
portant potential for the applicability of the 
presented framework in delivering con- 
textualized decision support services at the 
point of care and for making a substantial 
contribution towards ADE prevention. None -
theless, further research is required in order 
to quantitatively and thoroughly assess its 
impact in medication safety.
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ADEs are assimilated to “medication er-
rors”, while non-preventable ADEs are 
 considered adverse drug reactions (ADRs) 
that may not be avoidable [4, 5].

Clinical Decision Support Systems 
(CDSSs) have introduced great promise for 
reducing ADEs and medical errors in gen-
eral [6]. Although significant research has 
been conducted on ADE detection by em-
ploying various means, e.g., data review 
methods and/or machine learning and 
statistical inference techniques applied to 
patient data repositories [7], there is diffi-
culty in introducing the outcomes at actual 
clinical practice in order to support clinical 
decision making in preventing ADEs. This 
is due to multiple factors, among which  
are: a) the lack of reliable and accurate 
knowl edge on ADEs, b) the inability to 
adapt the discovered knowledge at each 
specific care context resulting in CDSS 
over-alerting and alert fatigue [8], and c) 
the architectural limitations of existing/leg-
acy Health Information Systems (HISs) 
which hamper the interoperability with 
 external CDSSs. Nevertheless, a compara -
tive international study revealed that the 
attitude of physicians is positive toward 
automatic alerting, and there is a clear 
requirement for introducing CDSSs in 
 clinical practice to enhance medication 
safety [9].

In this paper, we present a decision 
 support framework targeting medication 
safety with major focus on ADE preven-
tion. The novelty of the framework lies in 
the holistic approach followed for its design 
and development. In particular, we ap-
proached the problem by: a) starting from 
knowledge discovery for ADE detection 
through the analysis of hospital databases 
to provide reliable numbers about ADEs 
per country, hospital or medical unit, and 
describe their consequences and probable 
causes, and b) employing this knowledge 
for ADE prevention via decision support 
services development and deployment at 
the point of care, with steps (a) and (b) per-
formed in an iterative fashion. Major de-
sign features of the framework’s services 
are: a) their adaptation to the context of 
care (i.e. patient characteristics, place of 
care, and significance of ADEs), and b) 
their straightforward integration in the 
healthcare information technologies (IT) 

environment thanks to the adoption of a 
service-oriented architecture (SOA) and 
relevant standards.

The paper is structured as follows. In 
section 2, we present the materials em-
ployed for designing the CDSS framework, 
i.e. an ADE detection ruleset obtained 
from data mining hospital stays (i.e. the 
hospitalization periods of patients) in Elec-
tronic Health Record (EHR) systems. In 
section 3, we present the methods em-
ployed for the design and development of 
the framework and, particularly, its overall 
architecture and the main design principles 
followed, the means for appropriately ex-
ploiting its services at the point of care em-
phasizing on connectivity and contextual-
ization aspects, and the methods employed 
for clinical validation. Section 4 presents 
the obtained results concerning implemen-
tation, deployment, technical and clinical 
validation, while in section 5 we discuss 
limitations and future directions of the cur-
rent work. Finally, section 6 concludes the 
paper.

2. Materials

The basis for developing the proposed 
decision support framework was a ruleset 
of ADE prevention rules, obtained through 
a tentative knowledge discovery phase in-
volving data mining of 155,447 complete 
hospital stays. These stays included diag-
noses, drug administrations, laboratory 
examination results and patient character-
istics (e.g. age) contained in both struc-
tured and free-text records, and were ob-
tained from 6 European hospitals (in Den-
mark, France and Bulgaria). To facilitate 
data mining, the respective data were uni-
fied under a common data model [10]. 

The methods for developing the rule- 
set have been presented thoroughly by 
 Chazard et al. [11]. In summary, the 
knowl edge discovery focused on important 
drugs, such as those used in coagulation 
disorders and renal disorders, in order to 
explore both severe and frequent ADEs 
and rely on sufficient data for analysis. 
Various supervised rule induction methods 
were employed, such as decision tree and 
association rule mining, in order to trace 
different kinds of outcomes, e.g., hyponat-

remia and hyperkalemia. The result was a 
set of production rules of the general form:

C1 AND C2 AND . . . AND Cn → E , (1)

where Ci , i = [1, n] denote the Boolean 
conditions of the rule comprising of a vari-
able, an operator and a value. The variables 
may correspond to: a) groups of drug codes 
expressed in the ATC (Anatomical Thera-
peutic Chemical) classification system,  
b) groups of laboratory examination results 
expressed in C-NPU/IUPAC (Nomencla-
ture, Properties and Units/International 
Union of Pure and Applied Chemistry),  
c) groups of diagnosis codes encoded in 
ICD-10 (International Classification of 
Diseases), or (d) patient parameters, e.g. 
age and gender. In ▶Equation 1, E denotes 
the potential ADE.

As presented in [11], the discovered 
rules were filtered and validated from a 
pharmacological viewpoint, resulting in a 
final set of 236 rules. These rules have been 
also evaluated in the context of retrospec-
tive ADE detection and reached a positive 
predictive value of 53.5% (details are pro-
vided in section 4). According to a recent 
review study of ADE detection methods 
[12], this performance is superior com-
pared to various other methods, since the 
study concluded that “rule accuracy was 
variable and often poor with positive pre-
dictive value 0.9% – 64%”. The rules contain 
also several statistical features (e.g., the 
confidence, relative risk, and median delay 
of outcome appearance) that are meant to 
be computed per rule and for the medical 
department of interest. Such features, and 
especially the confidence of the rule that 
provides the probability to observe the out-
come when the conditions of the rule are 
met, are employed as contextualization 
 parameters for ADE prevention in the tar-
geted clinical setting.

It is important to highlight the novelty 
of the discovered knowledge, which lies in 
the fact that data-mining techniques are 
able to associate more complex patterns of 
conditions compared to the rules that  
are typically found in pharmacovigilance 
Knowl edge Bases (KB). Examples of such 
conditions are drug discontinuation or ab-
sence, and laboratory examination results, 
based on which the probability of the  
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ADE occurrence is specified more accu-
rately.

The discovered rules along with the 
standard terminologies employed for ex-
pressing their conditions and outcomes, 
i.e., ATC, C-NPU/IUPAC, and ICD-10, 
constituted the core of a KB [13], specifi-
cally designed to support the delivery of 
alerts and recommendations to the clinical 
personnel for ADE prevention. These shall 
be generated upon the conduction of a 
drug-related clinical task (e.g., a new drug 
prescription or a drug discontinuation), 
which can be registered/captured in a HIS, 
such as a Computerized Physician Order 
Entry (CPOE) or an EHR system.

In order to reduce over-alerting and 
alert fatigue [8], the alerts and recommen-

dations may be adapted according to the 
care context, i.e., specialized for each pa-
tient case and the department/hospital 
with respect to the significance of the ADE 
(e.g., based on the local statistical features). 
To this end, the KB additionally encapsu-
lates higher-level knowledge in the form of 
processes that indicate and may control 
whether rules should be considered or not 
in specific circumstances. This involves, for 
example, threshold-based filtering as re-
gards the statistical significance of the cor-
responding triggered rules, in order to de-
termine the most significant alerts or rec-
ommendations that will reach the CDSS 
end-user. A detailed description of the 
knowledge representation and reasoning 
scheme is provided in [13].

3. Methods
3.1 Decision Support Framework 
Architecture
From an architectural viewpoint, the major 
principle in the design of the proposed 
framework was the construction of an ex-
tensible, sustainable, adaptable, and inter-
operable solution. The architecture dis-
criminates knowledge engineering and 
CDSS development from knowledge ex-
ploitation and CDSS deployment, respec -
tively. In particular, as depicted in ▶ Fig- 
ure 1, the Global Knowledge Management 
Platform (GKMP, upper half of ▶ Figure 1) 
is devoted to the construction of a generic/
blueprint CDSS as a subsequent step of the 
knowledge discovery phase, while the 

Figure 1 The CDSS framework architecture (linkage among the Global Knowledge Management Platform, the Local Knowledge Management Platform, 
and the Local CDSS Runtime Platform and their subsequent development is depicted in a clock-wise order, starting from the upper left side)
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Local Knowledge Management Platform 
(LKMP, down-right side of ▶ Figure 1), 
constitutes an intermediary step to con-
struct a Local CDSS Runtime Platform 
(LRP, down-left side of ▶ Figure 1), specifi-
cally adapted for the current context, i.e., 
hospital, department/clinic, along with rel-
evant management tools.

 ▶ Figure 1 illustrates the lifecycle for de-
veloping the framework (cf. external anno-
tated arrows labeled from 1 to 4 in clock-
wise order), as well as major components 
of each platform. In more detail, in the 
GKMP, data-mining originated rules de-
rived from the formulated Unified Clinical 
Data Repository (after applying both clini-
cal and statistical validation) are imported 
in the Blueprint KB of the CDSS Engine. 
The CDSS Engine performs its reasoning 
based on the imported rules, meta-rules, 
and filtering mechanisms encapsulated in 
the KB, while Rule Statistics denote the 
statistical significance of rules [13]. Sup-
port tools such as the CDSS Verification 
Tool and the CDSS Performance Tool are 
available through the GKMP, enabling con-
sistency checking and benchmarking, re-
spectively, before operationalizing the deci-
sion support services in the targeted clini-
cal setting. A major part of the GKMP con-
stitutes the Blueprint Connectivity Plat-
form (CP), a software module enabling 
communication between the CDSS Engine 
and HISs, as presented in section 3.2.

Appropriate instantiation-update and 
configuration mechanisms are available for 
both the CDSS Engine and the CP, in order 
to construct specialized versions of these 
components for the local clinical setting in 

the respective LKMP. The LKMP offers 
also the CDSS Localization Tool, which en-
ables configuring the operation of the Lo-
calized CDSS Engine, according to the par-
ticular requirements/preferences that may 
be applicable (e.g., selection of rules to be 
deployed). In addition, the statistics of the 
incorporated rules are updated according 
to the Local Clinical Site Patient Data Re-
pository through a relevant mechanism.

In the context of LRP, using the tools of-
fered by the LKMP, Contextualized CDSS 
Instances (CxCDSS) may be constructed, 
which enable medication-related IT sys-
tems of the local environment to access the 
decision support services offered through 
the Localized CP.

For the overall design of the framework 
components, the Reference Model of Open 
Distributed Processing (RM-ODP) was 
employed as a modeling methodology [14], 
as it constitutes a well-established standard 
in the field offering several advantages 
compared to alternative approaches [15].

3.2 CDSS Connectivity with the 
Healthcare Enterprise

Considering the technical heterogeneity 
among HISs, the development of a generic 
CP offers an interoperable solution for ex-
ploiting the services offered by the CDSS. 
▶ Figure 2 provides a detailed view of the 
LRP part ( ▶ Figure 1) of the overall archi-
tecture. The CP acts as the mediator be-
tween the LRP and HISs, providing a sys-
tematic, controlled, and robust linkage 
with the decision support services offered. 
The main design principles for realizing 

the CP lie in its generalization and open-
ness, so as to support the connectivity 
among a variety of HISs and (potential) 
CDSS Engines, independently of their 
underlying technical characteristics. In 
 addition, the CP is capable of managing 
potential communication failures among 
the interacting parties.

The above features that are offered by 
the CP are achieved through the adoption 
of communication standards and technol-
ogies that are employed to realize a robust 
SOA [16]. SOA offers a loosely-coupled 
computing paradigm that has become a 
key ingredient of modern business appli-
cations and IT infrastructures. For the 
healthcare IT sector, the added value and 
the potential of SOA have been highlighted 
in several studies [17, 18].
▶ Figure 2 illustrates the entire work-

flow (steps (1) to (6)) that takes place upon 
the submission of requests for decision 
support by healthcare professionals, posed 
implicitly/explicitly through their interac-
tion with a HIS (step (1)). Specifically, the 
HIS formulates a request encapsulating the 
patient data for assessing the clinical case 
that is transmitted to the CP via a Web ser-
vice invocation (step (2)) expressed in its 
local format. The CP identifies the “appro-
priate” CxCDSS instance, transforms the 
request posed to the respective CxCDSS 
format (step (3)), and routes the message to 
the CxCDSS instance. The CxCDSS in-
stance, in turn, assesses the clinical case 
and generates potential alerts (accompa-
nied with recommendations for actions), 
according to the clinical context, e.g., the 
statistical significance of the alerts in the 

Figure 2 Architecture and communication flow for exploiting the decision support services in the clinical environment
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local setting, and runtime configuration 
options. These alerts are returned to the CP 
in the CxCDSS response format (step (4)), 
and the CP routes the message to the HIS, 
after its transformation to the HIS response 
format (step (5)). Finally, the HIS pro- 
vides the CxCDSS outcome to the health-
care professionals by handling the rele- 
vant information presentation issues (step 
(6)).

Interestingly, the “many-to-many” rela-
tionship among CxCDSSs and HISs that 
the CP supports (▶ Figure 1, LRP part) has 
been considered for a hospital or health-
care region in a scenario where different 
CxCDSS instances are exploited by HISs 
operating in different clinics. Overall, the 
proposed approach provides a scalable and 
extensible solution, which may be capable 
of growing sustainably over time.

3.3 Approach for CDSS 
 Contextualization

Contextualization is considered as a key at-
tribute for eliminating CDSS over-alerting, 
and reinforcing user-acceptance in the field 
of medication safety [9, 19]. In general, 
contextualization of decision support ser-
vices aims to address the delivery of “the 
right information, at the right time, to the 
right person, at the right place, and in the 
right format”. A model for information 
contextualization of medication-related 
decision support services has been intro-
duced by Niès et al. [20], proposing four 
major categories that have to be elaborated, 
namely Environment, Tasks, Users, and 
Temporal Aspects. In the scope of this work 
this model was applied and its dimensions 
involve:
• Environment: country and language 

characteristics, significance of the ADEs 
in the specific clinical setting, and epi-

demiological features such as risk fac-
tors of the particular population.

• Tasks: the tasks of prescription, dispen-
sation, administration, and compliance 
(PDAC) of the medication chain, per-
formed by healthcare professionals. 

• Users: presentation of decision support 
information according to their expertise 
and role (i.e., junior and senior physi -
cians, nurses, pharmacists).

• Temporal Aspects: Description of se-
quences involving the above three de-
scriptors that could lead/contribute to 
ADEs.

The above dimensions were analyzed to 
identify how they should be elaborated for 
the realization of the proposed decision 
support framework by considering both 
technical (i.e., architecture, performance, 
and technology-related) and organizational 
aspects (i.e., procedures taking place in 
clinical settings, as well as human factors). 
The analysis outcome reflects the following 
principles that were adopted in the imple-
mentation phase: a) the CDSS runtime 
handles Environment and Time-related as-
pects of contextualization, and b) the HIS 
component requesting access to the CDSS 
services handles the Tasks and Users con-
textualization dimensions. To keep its con-
nectivity role intact, the CP handles rout-
ing and data transformation; however, it 
allows contextual parameters (e.g., statis -
tical thresholds for rule filtering) to be 
passed to the CDSS through the respective 
request.

An approach for the contextualization 
of the adopted rules for ADE prevention is 
illustrated via the following example. Let us 
consider the 182nd rule from the ruleset:

R182 : CRI & NSAID & no K+ sparing diuretic 
→ hyperkalemia, (2)

where CRI stands for chronic renal insuffi-
ciency, NSAID for a non-steroidal anti-
 inflammatory drug and K+ for potassium. 
According to this rule, patients who suffer 
from renal insufficiency and who receive 
an NSAID but no potassium sparing di -
uretics could experience hyperkalemia, 
with a probability given by the “confidence” 
of the rule. The first condition is related to 
the medical condition of the patient, the 
second is related to a drug the patient is 
taking, and the third to a drug the patient 
does not take.

The confidence C182 of the above rule is 
defined as the probability of facing hyper-
kalemia given that the conditions of the 
rule are met, i.e.:

C182 = P(hyperkalemia | CRI & NSAID &  
no K+ sparing diuretic). (3)

C182 is computed using historical clinical 
data for the clinical setting of interest. In 
particular, ▶ Table 1 provides the value of 
C182 across six European hospitals pro -
viding data in our study and for the medi-
cal departments of hospital #4. In this 
example, the confidence differs signifi-
cantly between the hospitals, but it is not 
significantly different among the units of 
hospital #4. 

In order to cope with over-alerting, a 
threshold T can be applied on C182 to filter 
the alerts that R182 may generate when its 
conditions are met. This is performed ac-
cording to the following simple logic: If 
C182 exceeds the value of T (C182 ≥ T) or if 
the situation never occurred before (i.e.  
C182 = 0/0) in the current clinical setting, 
then alerts from R182 are generated by the 
respec tive CxCDSS; otherwise the CxCDSS 

(a)

(b)

Remark: If a patient is hospitalized in multiple departments of the same hospital, then for the computation of the confidence the stay is taken into 
 account in all the respective departments. However, such a case is counted only once for the computation of the confidence for the entire hospital.

Hospital:

C182 value:

Department:

C182 value:

#1

0/56 = 0%

Cardiology

27/255 = 10.6%

#2

3/174 = 1.7%

Geriatric

6/43 = 14%

#3

3/34 = 8.8%

Obstetrics & 
Gynecology

0/0

#4

68/703 = 9.7%

Internal Medi-
cine

23/253 = 9.1%

#5

5/43 = 11.6%

Pulmonology

15/115 = 13%

#6

0/2 = 0%

Surgery

3/47 = 6.4%

p value

0.0061

p value

0.818

Table 1 Comparison of C182 estimations: (a) in six hospitals, (b) in the departments of hospital #4
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suppresses the alerts concerning R182 . For 
instance, if the conditions of R182 are 
matched and T is set to 8% for all the 
 hospitals and departments referred in 
▶ Table 1, then the outcomes (i.e. alerting 
or not for R182) are those presented in 
▶ Table 2. Of course the selection of T for 
each rule may be set according to the local 
clinical setting. 

Besides employing the local statistical 
features of rules as illustrated in the above 
example, contextualization of the alerting 
scheme is also based on a number of meta-
rules and filtering mechanisms (details 
provided in [13]).

3.4 Clinical Validation

The clinical perspective was considered of 
outmost importance for the design and the 
acceptance of the proposed decision sup-
port framework. As illustrated in [9], clini-
cians really need automatic medication 
alerting systems, but they are skeptical con-
cerning the appropriateness of the alerts 
produced. 

To assess the positive predictive value of 
the ADE detection rules, a sample of 
24,753 patient records were explored to 
automatically detect possible ADEs and es-
pecially cases of possible drug-associated 
hyperkalemia. Hyperkalemia was selected 
as it presents a severe and potentially life-
threatening situation, with around three 
cases per month noticed in the depart-
ments of the participating hospitals. A 
manual expert review by clinicians and 
pharmacists was then performed to identi -
fy whether the automatically detected hy-
perkalemia cases were in fact actual ADEs. 
From this, positive predictive value and 
sensitivity were calculated. 

Furthermore, realistic test cases were 
systematically developed, aiming to assess 
correctness, completeness, and under-

standability of the CDSS alerting func-
tionality per se. Nine clinicians from hospi-
tals participating in the study from three 
countries were invited to develop test cases 
using a predefined template and a Web-
based repository. The clinicians were not 
informed of the architecture, functionality 
and capabilities of the CDSS and were not 
directly involved in the development of its 
Knowledge Base. The approach used to 
identify test cases varied between clinicians 
and included analysis of national guide-
lines on medication use, official drug infor-
mation, reports of actual ADEs from error 
reporting systems, complex patient cases 
and review of scientific literature on typical 
problems.

The test cases covered especially antico-
agulation treatment due to the high preva-
lence of this problem especially in elderly 
populations. Each test case contained a de-
scription of the patient case, including age, 
medical history, allergies, recent or planned 
treatment and medications, and the alert/
warning the underlying clinical case should 
generate (e.g., warning on increased bleed-
ing risk). All the proposed test cases were 
then reviewed by five other clinicians not 
being involved in the test cases definition 
to assess clarity and correctness, with a test 
case at least reviewed by two experts. In 
case of disagreement that could not be re-
solved through discussion, the test case was 
excluded from the repository. Validation 
via the test cases was launched as soon as 
the first versions of the CDSS runtime were 
made available, in order to obtain feedback 
as early as possible concerning the adopted 
approach and the exploitation of the dis-
covered knowledge. The generated output 
was assessed by two expert clinicians from 
two different countries to assess whether 
the expected alert (as defined in the test 
case description) was generated, and 
whether the alert was clinically correct. 

Disagreements were resolved by discussion 
in joint workshops. 

4. Results
4.1 Implementation

The CDSS runtime was implemented 
using Gaston [21], an IT tool developed 
for building tailor-made DSSs for the 
healthcare domain, which was selected by 
analyzing various candidates with respect 
to the requirements defined. The CDSS 
Engine operates as a server receiving re-
quests for data analysis encoded in a 
specifically- defined XML request format, 
in which the actual clinical data are en-
capsulated fol lowing the common data 
model [10], and generating an XML re-
sponse message.

The CP was developed using Oracle® 
SOA Suite [22], and Oracle® BPEL (Busi-
ness Process Execution Language) technol-
ogy. As the CP aims to provide trans-
formation services, it has been employed to 
map the format of the requests received 
from various HISs into the CDSS XML re-
quest. While the HIS requests are product-
specific, the CDSS responses are trans-
formed uniformly by the CP into the CAP 
(Common Alerting Protocol) format [23], 
a standard not specifically targeting the 
healthcare IT domain, but adequate for our 
aim to enable generalization of the pro-
posed approach. ▶ Figure 3 illustrates an 
excerpt of an example CDSS response 
message encoded in CAP. As remarked in 
section 3.2, the CP does not handle 
 presentation issues for the end-user, as re-
gards the information obtained from the 
CDSS, i.e., the messages’ language, content, 
and level of detail for describing the alerts, 
as well as the way of providing the alerts  
to the user. This remains a responsibility  
of the decision support requester HIS  

(a)

(b)

Hospital:

Output of R182

Department:

Output of R182

#1

No alert

Cardiology

Alert

#2

No alert

Geriatric

Alert

#3

Alert

Obstetrics & 
Gynecology

Alert

#4

Alert

Internal Medicine

Alert

#5

Alert

Pulmonology

Alert

#6

No alert

Surgery

No alert

Table 2 CxCDSS output when applying an 8% threshold to C182 (Table 1), if all the conditions of R182 are met: (a) in six hospitals, (b) in the departments of 
hospital #4
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• the effect that the rule is associated with, 
e.g., hyperkalemia;

• textual descriptions of the alert in 
various levels of detail (short/long de-
scription) for the involved healthcare 
professional types (physician, nurse, 
etc.), and in different languages (cur-
rently, Bulgarian, Danish, English, 
Greek, and French are supported, 
while a straightforward procedure has 
been established to support further 
languages);

• statistical features denoting the sig-
nificance of the alert in the specific 
context, e.g., the confidence value 
(probability of having the ADE effect 
knowing that the conditions of its oc-
currence are met), the support (prob-
ability of having the ADE effect and 
matching the conditions of its occur-
rence at the same time), the Fisher test 
p-value, etc., and

•  the conditions that triggered the rule.

The various tools of the CDSS platform, 
e.g., the CDSS Localization Tool, the CDSS 
Verification and Performance Tool, etc., 
have been developed as JavaTM appli-
cations. ▶ Figure 4 presents a screenshot of 
the CDSS Localization Tool, illustrating the 
wizard-like procedure that is offered for 
generating a particular CxCDSS instance 
for a specific clinical setting. Configuration 
options involve setting up thresholds to de-
fine the statistical significance of the ADE 
prevention rules, manually enabling/disab-
ling rules no matter their statistical signifi-
cance is, etc.

4.2 Deployment and Technical 
Validation

The decision support framework has been 
incrementally developed following an iter-
ative procedure, according to data availa -
bility and the subsequent releases of source 
knowledge [11]. The procedure involved 
rapid prototyping, deployment, and vali-
dation via test cases concerning primarily 
communication and performance issues, as 
well as the accuracy of the CDSS outcome.

In particular, an extensive evaluation of 
the LRP response time has been per -
formed, taking into account a variety of re-
quests with respect to the amount of data 

example is presented in ▶ Figure 3 for the 
rule presented in section 3.3):
• the (unique) identifier of the respective 

rule;

V. G. Koutkias et al.: From Adverse Drug Event Detection to Prevention

(e.g., CPOE or EHR, step (6) depicted in 
▶ Figure 2).

The CDSS response messages incorpor-
ate the following information per alert (an 

Figure 3 Sample alert encoded in the CAP format, corresponding to the example rule presented in 
section 3.3
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considered and the underlying complexity 
(e.g., number of rules included in the rule-
set, data payload, etc.). ▶ Figure 5 presents 
a scatter-plot of the response time with re-
spect to the data request size, along with a 
histogram depicting the distribution of 
classifications across response time. As re-
marked in [13], the response time varies 
according to the inference procedure ap-
plied by the CDSS Engine, e.g., whether the 
encapsulated filtering mechanisms are en-
abled or not. Equally important, the re-
sponse time depends critically on the CPU 
processing power. The outcomes presented 
in ▶ Figure 5 (response time 6 – 8 sec in the 
majority of the classifications) correspond 
to the full-feature scenario, in which the 
CDSS Engine employs all its internal post-
processing and filtering mechanisms on 

the entire ruleset, with the entire LRP de-
ployed in a medium-class notebook com-
puter (CPU Intel® i3).

An automated verification procedure 
for the CDSS runtime has been also iter-
atively applied aiming to identify whether 
the implemented rules are consistent with 
the input provided by the knowledge dis-
covery techniques. For this purpose, the 
CDSS responses for the same clinical data-
base used in the knowledge discovery 
phase, as well as a list of hospital stays fit-
ting each rule conditions were used as 
input. The outcome of this procedure has 
been assessed via contingency tables [24], 
comparing the identities of the CDSS rules 
fired on each hospital stay with its counter-
part from the data mining. This procedure 
resulted in the optimization of the ruleset, 

in order to address more adequately the 
requirements of a prospective decision sup-
port operation.

The generic design of the CP makes it 
independent of the CDSS Engine and the 
HIS side (▶ Figure 2). Due to this ap-
proach, the specifications defined enable 
vendors of either CDSS Engines or HISs to 
plug-in their systems in the CP. As a proof-
of-concept, DxCare® (a commercial EHR 
system from Medasys®, France), EPM® (a 
CPOE system from IBM®, Denmark), and a 
Web-based prototype (independent of any 
existing healthcare IT product) have been 
successfully employed to communicate 
with the LRP [25], by deploying various 
CxCDSS instances simultaneously. In this 
respect, we have successfully implemented 
the mapping from HL7 CDA (Clinical 

Figure 4 Using the step-by-step wizard of the CDSS Localization Tool to configure a specific Contextualized CDSS (CxCDSS) instance: the step of reviewing 
ADE prevention rules and setting up statistical significance filtering levels is depicted.
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Document Architecture) format [26], and a 
proprietary format that the above products 
require/support to the CP internal request 
format.

Links to demonstrators (live or videos) 
of the above prototypes are accessible in 
[27], in which different perspectives were 
adopted to handle presentation issues of 
the decision support outcome.

4.3 Clinical Validation

In the sample of 24,753 patient records that 
was analyzed, 997 possible ADEs (i.e., 4% 
of all hospitalizations) were detected by the 
ADE rules, including 507 cases of possible 
drug-associated hyperkalemia. The manual 
expert review confirmed that 271 of these 
hyperkalemia cases were in fact actual 
ADEs. Thus, the positive predictive value 
of the ADE rules in this sub-study was 
found to be 53.5% and the sensitivity was 
95.1% [20]. These figures for ADE detec-
tion are superior to many other methods 
presented in the literature [12]. We need to 
remark though that, since the performance 

of ADE detection methods varies signifi-
cantly according to the data being analyzed 
and the events that are being investigated, 
comparisons among detection methods 
without employing a common basis are 
 indicative.

In addition, as remarked in section 3.4, 
24 test cases were analyzed by the CDSS 
and the generated output was assessed by 
two expert clinicians. Inter-rater agreement 
before discussing and resolving all dis-
agreements was good (0.74). 71% of the 
test cases showed the expected alerts; 40% 
of the alerts were judged as clinically cor-
rect; in 31% of the alerts, the experts could 
not judge the clinical correctness due to 
missing clinical information. The difficul-
ties faced by the experts in the review pro-
cedure were mainly due to the fact that the 
alerts produced were based on data-mining 
methods which are able to statistically as-
sociate quite complex patterns of condi-
tions compared to what can be typically 
met in pharmacovigilance KBs.

Overall, based on the detailed analysis 
of the evaluation output, a comprehensive 

set of recommendations for improvement 
of the decision support output were made, 
including wording of alerts, grouping of 
alerts, adding more explanations for the 
user, and providing recommendations for 
actions in response to the alert. The major-
ity of these recommendations have been 
addressed in ongoing iterations of the 
CDSS development.

5. Discussion

The potential of IT in the field of patient 
safety has been illustrated in various 
studies [28]. In particular, decision support 
for medication safety has been recognized 
as a significant research topic [1], and vari-
ous systematic efforts have been reported 
in the literature especially focusing on inte-
grating decision support in CPOE systems 
[7]. However, due to the complexity of 
medication management and the diverse 
types of associated safety risks, medication-
related decision support needs to be inte-
grated in various HISs, beyond CPOE sys-

Figure 5  
Left-side: Scatter-plot 
depicting the CDSS 
response time with 
respect to the data 
request size; right-
side: histogram de-
picting the distribu-
tion of classifications 
across the response 
time
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tems. Various methods have been devel-
oped for detecting potential drug risks [6], 
but still there is a gap in employing the dis-
covered knowledge in actual clinical set-
tings for harm prevention through CDSSs. 
This shortcoming stems from multiple fac-
tors, among which the architectural limi-
tations of existing HISs hampering in -
tegration aspects, the inability to adapt the 
discovered knowledge at the local context, 
and the overall inherent complexity of the 
clinical environment.

The aim of the current work was the de-
sign and development of a CDSS frame-
work targeting medication safety through: 
a) identification of drug safety risks and 
provision of reliable numbers regarding 
their prevalence per hospital or medical 
unit, b) contextualization of the decision 
support services, in order to address the 
requirements of the local clinical setting 
that these shall be offered, c) seamless con-
nectivity with medication-related HISs 
through an interoperable design, and d) 
maintenance and extension of knowl edge 
and system components. The application 
focus of the presented framework was pre-
ventable ADEs, an important subset of 
medication safety risks [1–5].

Overall, the design of the presented 
framework illustrates a holistic approach 
for the construction and delivery of deci-
sion support services (exceeding the appli-
cation scope of medication safety), starting 
from the knowledge discovery phase 
(GKMP), continuing with the adaptation 
of the services for the local environment 
through contextualization (LKMP), and re-
sulting at the actual deployment and use of 
the services (LRP). The knowledge dis-
covery phase that was elaborated discrimi-
nates our work from other CDSSs for ADE 
prevention which rely only on expert 
knowledge obtained from clinical guide-
lines and medical reference books like 
ADEAS [29].

The presented framework is aligned 
with other SOAs that have been proposed 
for clinical decision support, such as 
SANDS [30]. SANDS defines a set of inter-
faces that a decision support service should 
make available, leaving the choice of 
knowl edge representation up to the im-
plementer. As we focused on ADE preven-
tion, we had to first seek for reliable knowl -

edge concerning the prevalence of ADEs 
and then proceed with the construction of 
decision support services for exploiting this 
knowledge at the point of care. Thus, our 
framework addresses also the issue of 
knowledge discovery and management to-
wards contextualized decision support. 
Equally important, we elaborated on 
knowl edge maintenance and update by 
providing dedicated tools and mechanisms 
to support the iterative process from know-
ledge discovery to decision support deploy-
ment, enabling this way the overall sustain-
ability of the framework. On the other 
hand, SANDS supports scenarios where 
several disparate decision support services 
are needed to synthesize a decision, which 
have not been elaborated in the current 
work, although the proposed architecture 
enables multiple HISs to connect to mul -
tiple CxCDSS instances through the CP.

For a successful framework implemen-
tation, we share the same experience re-
ported for SANDS [30], concerning the 
importance of prototype development, in 
order to identify and address challenges 
and special requirements which are not an-
ticipated at the design level. Our prototypes 
enabled us to develop a fully functional and 
technically efficient architecture.

The accuracy of the employed methods 
for ADE detection, along with the fact that 
the adopted rules are able to associate more 
complex patterns of conditions (e.g. drug 
discontinuation or absence, and laboratory 
examination results) compared to the rules 
that are typically found in pharmacovigi-
lance KBs, provides the basis for develop-
ing novel and valuable decision support 
services. 

Furthermore, contextualization of de -
cision support has been introduced as a 
mechanism to confront (besides the overall 
adaptation of the provided services and) 
the issue of over-alerting. Over-alerting 
may be defined as “sending an alert to pre-
vent an outcome although the probability 
of its occurrence is too low or null”, and it is 
crucial for the effective operation and user 
acceptance of medication-related CDSSs 
[8, 9]. In the current implementation, 
through the CxCDSS instances that may be 
deployed, this issue is being dealt with:  
a) the selection of the exact rules of interest 
for the local setting, e.g., related with co-

agulation disorders, b) the calculation and 
use of the local statistical features for the 
selected rules to assess their statistical sig-
nificance, and c) a number of meta-rules 
and filtering mechanisms [13].

In the scope of this work, obtaining true 
alerts was the main priority. As the empiri-
cal confidence of the rules has been esti-
mated in real data in the clinical settings 
considered (hospital or department), al-
though a rule is always applicable from a 
pharmacological viewpoint, the empirical 
probability of experiencing the outcome 
knowing that the conditions of the rule are 
met, enables to “silent” the CDSS in case 
the probability is too low. Although the ef-
fect on alert fatigue has not been empiri-
cally evaluated, the adopted contextualized 
approach reduces over-alerting and could 
contribute in reducing alert fatigue. The 
CDSS Localization Tool that has been de-
veloped as part of the LKMP enables the 
flexible configuration of the relevant 
thresholds as required in the respective ap-
plication setting. Machine learning strat-
egies could be employed to support/auto-
mate the selection of such thresholds. 
Further experimentation on the direction 
of handling contextualization aspects 
through the CP, so as to extend its trans-
formation and routing scope, constitutes 
an additional future work direction.

Concerning connectivity, the CP en-
ables “plugging” new systems in the archi-
tecture without redeveloping the entire 
process. Following this approach, each 
stakeholder (either CDSS or HIS vendor) 
interested in participating in the deploy-
ment of the proposed architecture needs to 
be aware of how to communicate with the 
CP, rather than how to communicate with 
the other systems/parties. This is possible 
thanks to the well-defined Web service in-
terfaces that are available through the 
adopted SOA, and standards-based data 
communication protocols.

The CDSS response time depends 
heavily on the inference procedure em-
ployed, e.g., whether the various processing 
mechanisms offered by the CDSS Engine 
are enabled or not [13], as well as on the 
available computing power. The signifi-
cance of the delay recorded in our bench-
mark test relies on the mode employed for 
operating the decision support services, 
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i.e., reactive in the case of the EPM® proto-
type, or proactive in the case of the 
DxCare® prototype [25]. Nevertheless, per-
formance improvement is an issue that 
needs to be further elaborated (especially 
for the reactive operation), concerning the 
inference part as well as the deployment of 
the LRP in more advanced computational 
infrastructures such as cloud-based.

The developed proof-of-concept proto-
types, their integration in real hospital en-
vironments, as well as the technical and 
clinical validation that we conducted, illus-
trate the potential and applicability of the 
presented framework in delivering contex-
tualized decision support services at the 
point of care to contribute in ADE preven-
tion. However, it is important to conduct 
long-term evaluation of the decision sup-
port services through appropriate field 
studies, in order to quantitatively and thor-
oughly assess their impact in clinical prac-
tice and medication safety.

6.  Conclusion

This paper presented a systematic ap-
proach towards the design, development, 
and deployment of decision support ser-
vices for ADE prevention. It approached 
the problem by first seeking for reliable 
knowledge concerning the prevalence of 
ADEs and then proceeded with the con-
struction of knowledge-based CDSSs con-
textualized and exploitable at the point of 
care. Our results concerning our proto-
types, i.e., their performance and inte-
gration with real healthcare IT products, 
introduce an important potential for the 
applicability of the presented framework in 
delivering contextualized decision support 
services at the point of care to contribute in 
ADE prevention. Nonetheless, further re-
search is required in order to assess its use 
in clinical practice and, ultimately, its im-
pact in medication safety.
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